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ABSTRACT: This study aims to demonstrate the application of Seth's transition theory to analyse the time dependent 

stresses in an orthotropic spherical shell subjected to an external pressure and temperature gradient. Orthotropic 

materials exhibit different mechanical and thermal properties in three mutually perpendicular directions These materials 

are increasingly used in high-performance structures such as aerospace components, pressure vessels, and deep-sea 

submersibles. The governing equilibrium equations are formulated using spherical shell theory, and analytical approach 

is developed to solve the resulting system. By considering the nonlinear component of the transition state and utilising 

the principal stresses, the creep stresses are evaluated. On the bases of graphs and numerical computations it can be 

concluded that topaz has compressive stresses and steel has tensile stresses on the mid-surface of the shell. Therefore, 

the spherical shell of topaz (orthotropic material) is better in extremely high temperatures without mechanical loading. 

In contrast, the spherical shell of steel (isotropic material) is better in high-pressure and mechanical loads in the field of 

design engineering. The results support the advancement of design strategies for orthotropic shell structures subjected 

to combined thermal and mechanical loading conditions. 
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I. INTRODUCTION 

 

Shells made of metal or solid materials are predicted to have a wide range of industrial and technological applications. 

Orthotropic spherical shells are extensively used in aerospace structures, including Satellite antennas and domes, 

Pressure vessels and fuel tanks and Space habitats and protective enclosures etc. Spherical shells are widely used as 

pressure vessels in nuclear and chemical plants. Their unique anisotropic behaviour provides enhanced mechanical 

performance, tailored stress responses, and improved efficiency in solid structures performing under loading 

conditions. 

 

Analysis of elastic-plastic and creep deformation in Seth [1]. Betton [2] investigated creep deformation in thick-walled 

shells subjected to internal pressure. Temesgen and others [3] considered a transversely isotropic disc and investigated 

creep stress with variable density under heat gradient. Saadatfar, Babazadeh and Babaelehi [4] investigated functionally 

graded piezoelectric revolving disc under thermomechanical and mechanical loads with radiation and convection and 

found that solar radiation, convection boundary and variable thickness have the significant impact on the disc. Es-

Saheb & Fouad [5] employed the finite element approach to analyse the creep deformation in thick-walled cylinder 

subjected to inner and outer constant load and pressure and found that as the strain rates increases, the pressure on the 

cylinder’s internal surface also increases. Sharma [6] evaluated the stresses in a thin annular transversely isotropic 

piezoelectric disk with variable thickness and density using mid-zone theory and found that a disk made of barium 

titanate BaTiO3 (piezoelectric) performs better than a disk made of PZT4 (piezoceramic). Sharma and Nagar [7] 

employed analytic approach to evaluate the stresses in a functionally graded piezoelectric disc with variable 

compressibility and variable density and found that annular disc made of PZT-4 is better for the purpose of engineering 

designs. Godana, Singh and others [8] used Seth’s mid-zone idea to generalize strain measure theory for the modelling 

elastoplastic deformation in a transversely isotropic shell under temperature gradient and consistent pressure and found 

the stress distribution over the surface of the shell. Bayat and others [9] applied the extended finite element method 

(XFEM) to researched a fractured orthotropic material under a non-classic thermal shock using the Green-Naghdi (GN) 

thermos elasticity theory (type II). Jafary & others [10] investigated functionally graded annular plates subjected to 

different time-dependent loads to improve the design and performance of the porous plate. Vahid Daghigh & others 

[11] researched the design of FGM spinning disks with variable thickness under extremely high-temperature using 
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time-dependent creep investigation. Saadatfar & others [12] considered the FG piezoelectric rotating plate with varying 

thickness to study creep deformation under heat transport including convection and radiation. Matvienko and others 

[13] investigated the plastic stresses in a rotating disc using mechanical tensile tests and optical microscope techniques 

and found the plastic resistance reduces with increasing disc width at a constant inner radius, indicating a larger 

influence from the centrifugal force field. Jafari & Azhari [14] considered the time-dependent cylindrical and spherical 

shells to analyze the creep deformation with the use of simple HP-cloud mesh-free method. Park & Lim [15] studied a 

computational model to investigate the creep deformation in the lower head of the reactor pressure vessel using shell 

theory. Verma & Singh [16] employed concept of transition theory to study creep response of spherical shells with 

different thickness ratio under pressure and compressibility. Shahi & others [17] employed Seth’s transition theory to 

investigate creep stress in a rotating disc formed of Si-Ti-C-O fibre-bonded CMC and found the spike in strain rates 

implies that the disc will fracture at the bore next to the inclusion. Sharma and others [18] investigated creep stresses in 

orthotropic cylinder formed of FGM with internal pressure and external pressure and found both rotation and non-

homogeneity have a significant impact on thermal creep strains. Motameni [19] evaluated the elastic-plastic stresses in 

a rotating disc made up of orthotropic material with variable thickness. Beheshti, A. and others [20] employed a higher-

order shell theory for the significant deformation of shells formed of transversely isotropic materials and investigated 

various instances to demonstrate the functionality of the suggested elements in addition to anisotropy effects. Sharma 

and Nagar [21] evaluated elastic-plastic stresses in FG isotropic disc to investigate the strength and performance under 

variable compressibility and variable thickness of the disc. Sharma and Radakovic [22] evaluated stresses and 

displacement in a rotating disc made up of orthotropic material with stiff rod and found that disc made up of topaz is 

best for the engineering design purpose.  

 

II. OBJECTIVE OF THE STUDY 

 

In all the studies mentioned in the literature survey stresses in elastic plastic and creep state are assessed for in different 

solid structures such as thick-walled transversely isotropic spherical shell, transversely isotropic disc, functionally 

graded piezoelectric revolving disc, functionally graded orthotropic circular cylinder, etc., under different conditions as 

internal pressure or external pressure, extremely high-temperature, variable thickness, variable compressibility. But no 

one has evaluated the creep stresses for an orthotropic spherical shell under external pressure and temperature by 

applying the concept of transition theory. 

 

The aim of the present study is to investigate the strength of the spherical shell composed of orthotropic material when 

exposed to external pressure and temperature. In this paper, the elastic-plastic deformation in an orthotropic spherical 

shell exposed to a temperature gradient is investigated by Seth transition theory. The orthotropic spherical shell is 

considered which is the novelty of this research. The spherical shells of topaz, barite & steel are compared based on 

their strength and performance under external pressure and thermal loading.     

 

III. MATHEMATICAL FORMULATION 

 

 
 

Figure 1: Geometry of the spherical shell. 
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Consider a spherical shell with inner radius 𝑎 and outer radius 𝑏, which is exposed to a constant pressure 𝑝 on its 

outside surface. The shell’s thickness is constant. Figure 1 depicts that the temperature at the spherical shell’s centre 

bore is 𝜃 (at 𝑟 =  𝑎).  
In the form of spherical polar coordinates (𝑟 , 𝜃, 𝜑), the displacement co-ordinates 𝑢 & 𝑣  are assumed to be  𝑢 =𝑟(1 − 𝛽);   𝑣 = 0; 𝑤 = 0   (Borah [21])                                                                                  (1) 

where 𝛽 is a function of variable r where 𝑟 = √(𝑥2 +  𝑦2 + 𝑧2)  

By employing the generalised strain measure (Borah [21]), the principal strain components are given as   𝑒𝑟𝑟 = 1𝑛 [1 − (𝑟𝛽′ +  𝛽)𝑛];   𝑒𝜃𝜃 =  𝑒𝜑𝜑 =  1𝑛 [1 − 𝛽𝑛]                                                                                                               
 𝑒𝑟𝜃  =  𝑒𝜃𝜑 =  𝑒𝜑𝑟  = 0.                  (2) 

where 𝑛 is the strain measure; and   𝛽′ =  𝑑𝛽𝑑𝑟 . 

The stress-strain relationships for orthotropic materials according to Hooke’s Law are expressed as: 𝜎𝑟𝑟 = 𝑐11𝑒𝑟𝑟 + 𝑐12𝑒𝜃𝜃 + 𝑐13𝑒𝜑𝜑 − 𝛼1𝜃  𝜎𝜃𝜃 = 𝑐21𝑒𝑟𝑟 +  𝑐22𝑒𝜃𝜃 + 𝑐23𝑒𝜑𝜑 − 𝛼2𝜃  𝜎𝜑𝜑 = 𝑐31𝑒𝑟𝑟 +  𝑐32𝑒𝜃𝜃 + 𝑐33𝑒𝜑𝜑 − 𝛼3𝜃  𝜎𝑟𝜃  =  𝜎𝜃𝜑 =  𝜎𝜑𝑟  = 0.                                                                                                                    (3) 

The temperature 𝜃 satisfying steady state heat equation ∇2𝜃 = 0, with boundary conditions  𝜃 = 𝜃0 𝑎𝑡 𝑟 = 𝑎;  𝜃 = 0 𝑎𝑡 𝑟 = 𝑏   
where 𝜃0 is constant, is given by Timoshenko and Goodier [14] 𝜃 = 𝜃0𝑎(𝑏−𝑎) (𝑏𝑟 − 1)            (4) 

Substituting Eq. (2) into Eq. (3), the stresses are as follows: 𝜎𝑟𝑟 = 𝑐11𝑛 [1 − 𝛽𝑛(1 + 𝑃)𝑛] +  (𝑐12 + 𝑐13)𝑛 [1 − 𝛽𝑛] − 𝛼1𝜃 𝜎𝜃𝜃 =  𝑐21𝑛 [1 − 𝛽𝑛(1 + 𝑃)𝑛] +  (𝑐22+𝑐23)𝑛 [1 − 𝛽𝑛] − 𝛼2𝜃                𝜎𝜑𝜑 = 𝑐31𝑛 [1 − 𝛽𝑛(1 + 𝑃)𝑛] + (𝑐32+𝑐33)𝑛 [1 − 𝛽𝑛] − 𝛼3𝜃                                  (5) 

where  𝑟𝛽′ =  𝛽𝑃 ( 𝑃 is a 𝛽’s function  and 𝛽 is 𝑟’s function), 𝛼1, 𝛼2 𝑎𝑛𝑑 𝛼3  are coefficients of thermal expansion and 𝜃 is temperature. 

Equilibrium equations for spherical shell are given by following equations: 𝜕𝜎𝑟𝑟𝜕𝑟  + 
1𝑟𝑠𝑖𝑛𝜃 𝜕𝜎𝑟𝜑𝜕𝜑 + 1𝑟 𝜕𝜎𝑟𝜃𝜕𝜃 + 2𝜎𝑟𝑟−𝜎𝜃𝜃−𝜎𝜑𝜑+ 𝜎𝑟𝜃𝑐𝑜𝑡𝜃  𝑟 = 0, 𝜕𝜎𝑟𝜃𝜕𝑟  + 
1𝑟𝑠𝑖𝑛𝜃 𝜕𝜎𝜃𝜑𝜕𝜑 + 1𝑟 𝜕𝜎𝜃𝜃𝜕𝜃 + 3𝜎𝑟𝜃+(𝜎𝜃𝜃−𝜎𝜑𝜑)𝑐𝑜𝑡𝜃  𝑟 = 0, 𝜕𝜎𝑟𝜑𝜕𝑟  + 
1𝑟𝑠𝑖𝑛𝜃 𝜕𝜎𝜑𝜑𝜕𝜑 +  1𝑟 𝜕𝜎𝜑𝜃𝜕𝜃 +  3𝜎𝑟𝜑+2𝜎𝜃𝜃𝑐𝑜𝑡𝜃  𝑟 = 0.                                                                          (6) 

Using Eq. 5 and Eq. 6, the following equations of equilibrium are considered  𝜕𝜎𝑟𝑟𝜕𝑟 + 2𝜎𝑟𝑟−𝜎𝜃𝜃−𝜎𝜑𝜑𝑟  = 0,                                                                                                                     

 or   
𝜕𝜎𝑟𝑟𝜕𝑟 − 2(𝜎𝑟𝑟−𝜎𝜃𝜃)𝑟  = 0.                                                                                                                   (7) 

Using equations (5) and (7), the nonlinear differential equation is obtained as 𝛽𝑛+1𝑃(𝑃 + 1)𝑛 −1 𝑑𝑃𝑑𝛽 =𝑐11𝛽𝑛(𝑃 + 1)𝑛 − (𝑐12 + 𝑐13)𝛽𝑛𝑝 + 2 [(𝑐11−𝑐21)𝑛 [1 − 𝛽𝑛(1 + 𝑃)𝑛] + 2( 𝑐12 + 𝑐13 − 𝑐22 −𝑐23) (1−𝛽𝑛)𝑛 − (𝛼1 − 𝛼2)𝜃} + 𝛼1𝜃0𝑎𝑏(𝑏−𝑎)                       (8) 

The following boundary conditions are considered at internal and external surfaces of the shell 

  𝜎𝑟𝑟 = 0          𝑎𝑡      𝑟 = 𝑎                                                             

  𝜎𝑟𝑟 = −𝑝         𝑎𝑡      𝑟 = 𝑏.                      (9)  

                                                                                              

 

IV. TRANSITION FROM PLASTIC TO CREEP 

 

Seth's mid-zone theory states that the transition from plastic to creep takes place at the transformation point 𝑃 → −1 (Borah [21]). For estimating the plastic and creep stresses, the transition function 𝑅 is considered as  𝑅 =  𝜎𝑟𝑟  – 𝜎𝜃𝜃 = (𝑐11−𝑐21𝑛 ) (1 − 𝛽𝑛(1 + 𝑃)𝑛) + (𝑐12+𝑐13−𝑐22−𝑐23)𝑛 (1 − 𝛽𝑛) − (𝛼1 − 𝛼2)𝜃               (10) 
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Taking logarithmic differentiation of equation (8), we get 𝑑𝑙𝑜𝑔𝑅𝑑𝑟  = 
(𝑐11−𝑐21𝑛 )[−𝑛𝑟𝛽𝑛+1𝑃(𝑃+1)𝑛−1𝑑𝑃𝑑𝛽− 𝑛𝑟( 𝑟𝑟2)𝑘𝛽𝑛𝑃(𝑃+1)𝑛]+ (𝑐12+𝑐13−𝑐22−𝑐23)𝑛 (− 𝑛𝑟𝛽𝑛𝑃)+(𝛼1−𝛼2)𝛼1𝜃0𝑎𝑏(𝑏−𝑎)𝑟2(𝑐11−𝑐21𝑛 )(1−𝛽𝑛(1+𝑃)𝑛)+ (𝑐12+𝑐13−𝑐22−𝑐23)𝑛 (1−𝛽𝑛)−(𝛼1−𝛼2)𝜃             (11) 

Replacing  
𝑑𝑃𝑑𝛽  value from equation (7) in equation (10) and using the transition point 𝑃 →  −1, we find 

𝑑𝑙𝑜𝑔𝑅𝑑𝑟  = (−𝑛(𝑐11−𝑐21)(𝑐12+𝑐13𝑟𝑐11 )𝛽𝑛+2(𝑐11−𝑐21)2𝑟 +(𝑐11−𝑐21)(𝑐12+𝑐13−𝑐22−𝑐23)𝑟𝑐11 ( 1−𝛽𝑛)−2(𝛼1−𝛼2)𝜃(𝑐11−𝑐21)𝑛𝑟𝑐11 +−2𝛼1𝜃0𝑎𝑏(𝑐11−𝑐21)𝑛𝑟𝑐11 + (𝑐12+𝑐13−𝑐22−𝑐23)(1−𝛽𝑛)+(𝛼1−𝛼2)𝜃0𝑎𝑏𝑛(𝑏−𝑎)2(𝑐12+𝑐13−𝑐22−𝑐23)𝑛 (1−𝛽𝑛)−(𝛼1−𝛼2)𝜃    (12) 

Taking asymptotic value of 𝛽 = 𝐷𝑟  as 𝑃 →  −1, 𝐷 is constant. 

𝑑𝑙𝑜𝑔𝑅𝑑𝑟  = (−𝑛(𝑐11−𝑐21)(𝑐12+𝑐13𝑟𝑐11 )(𝐷𝑟)𝑛+2(𝑐11−𝑐21)2𝑟 +(𝑐11−𝑐21)(𝑐12+𝑐13−𝑐22−𝑐23)𝑟𝑐11 ( 1−(𝐷𝑟)𝑛)−2(𝛼1−𝛼2)𝜃(𝑐11−𝑐21)𝑛𝑟𝑐11 +−2𝛼1𝜃0𝑎𝑏(𝑐11−𝑐21)𝑛𝑟𝑐11 + (𝑐12+𝑐13−𝑐22−𝑐23)(1−(𝐷𝑟)𝑛)+(𝛼1−𝛼2)𝜃0𝑎𝑏𝑛(𝑏−𝑎)2(𝑐12+𝑐13−𝑐22−𝑐23)𝑛 (1−(𝐷𝑟)𝑛)−(𝛼1−𝛼2) 𝜃0𝑎(𝑏−𝑎)(𝑏𝑟−1)    (13) 𝑑𝑙𝑜𝑔𝑅𝑑𝑟  = 𝐺,    𝑙𝑜𝑔𝑅 =  ∫ 𝐺𝑑𝑟 + 𝑙𝑜𝑔𝐴 𝑅 = 𝐴𝑒∫ 𝐺𝑑𝑟 = 𝐴𝐻                                                                                                                           (14) 

Where 𝐻 = 𝑒∫ 𝐺𝑑𝑟   and  

𝐺 =
(−𝑛(𝑐11−𝑐21)(𝑐12+𝑐13𝑟𝑐11 ) (𝐷𝑟)𝑛 + 2(𝑐11−𝑐21)2𝑟 + (𝑐11−𝑐21)(𝑐12+𝑐13−𝑐22−𝑐23)𝑟𝑐11 ( 1 − (𝐷𝑟)𝑛)−2(𝛼1 − 𝛼2)𝜃 (𝑐11−𝑐21)𝑛𝑟𝑐11 − 2𝛼1𝜃0𝑎𝑏 (𝑐11−𝑐21)𝑛𝑟𝑐11 + (𝑐12 + 𝑐13 − 𝑐22 − 𝑐23) (1 − (𝐷𝑟)𝑛) + (𝛼1−𝛼2)𝜃0𝑎𝑏𝑛(𝑏−𝑎)2(𝑐12+𝑐13−𝑐22−𝑐23)𝑛 (1 − (𝐷𝑟)𝑛) − (𝛼1 − 𝛼2) 𝜃0𝑎(𝑏−𝑎) (𝑏𝑟 − 1)  

                                                       (15) 

Substituting the value from Equation (14) in the equation of equilibrium (7) and integrating, we have 𝜎𝑟𝑟 = ∫ 2𝐴𝐻𝑟 𝑑𝑟 + 𝐵                                                                                                                         (16) 

From eqn. (10) and (16), we get 𝜎𝜃𝜃 =  ∫ 2𝐴𝐻𝑟 𝑑𝑟 − 𝐴𝐻 + 𝐵                                                                                                             (17) 

After applying boundary conditions (9), we have 0 = 2 [𝐴 ∫ 𝐻𝑟 𝑑𝑟]𝑟=𝑎 + 𝐵                                                                                                               (18) −𝑝 =  2 [𝐴 ∫ 𝐻𝑟 𝑑𝑟]𝑟=𝑏 + 𝐵                                                                                                            (19) 

After solving Eqn. (18) and (19), we obtained 𝐴 =  −𝑝2[∫𝐻𝑟 𝑑𝑟]𝑟=𝑏−2[∫𝐻𝑟 𝑑𝑟]𝑟=𝑎  

 𝐵 = 𝑝[∫𝐻𝑟 𝑑𝑟]𝑟=𝑏−[∫𝐻𝑟 𝑑𝑟]𝑟=𝑎 [∫ 𝐻𝑟 𝑑𝑟]𝑟=𝑎                                                                             (20) 

Using equations (16), (17) and (20), we have 𝜎𝑟𝑟 = 𝑝(− ∫𝐻𝑟 𝑑𝑟+ [∫𝐻𝑟 𝑑𝑟]𝑟=𝑎)[∫𝐻𝑟 𝑑𝑟]𝑟=𝑏−[∫𝐻𝑟 𝑑𝑟]𝑟=𝑎 ;     𝜎𝜃𝜃 =  𝑝(− ∫𝐻𝑟 𝑑𝑟+[∫𝐻𝑟 𝑑𝑟]𝑟=𝑎+𝐻)[∫𝐻𝑟 𝑑𝑟]𝑟=𝑏−[∫𝐻𝑟 𝑑𝑟]𝑟=𝑎        (21) 

The subsequent non-dimensional components are assumed as 𝑅 =  𝑟𝑏 ;  𝑅0 =  𝑎𝑏 ;  𝑇𝑟𝑟 = 𝜎𝑟𝑟𝑝 ;  𝑇𝜃𝜃 = 𝜎𝜃𝜃𝑝 ;  Θ = 𝜃0(𝛼1−𝛼2)𝑝                        (22) 

In non-dimensional form, 𝑇𝑟𝑟 = (− ∫𝐻1𝑅 𝑑𝑅+ [∫𝐻1𝑅 𝑑𝑅]𝑅=𝑅0)[∫𝐻1𝑅 𝑑𝑅]𝑅=1−[∫𝐻1𝑅 𝑑𝑅]𝑅=𝑅0 ;  𝑇𝜃𝜃 =  (− ∫𝐻1𝑅 𝑑𝑅+ [∫𝐻1𝑅 𝑑𝑅]𝑅=𝑅0+𝐻1)[∫𝐻1𝑅 𝑑𝑅]𝑅=1−[∫𝐻1𝑅 𝑑𝑅]𝑅=𝑅0                                                            (23) 

Where 𝐻1 = 𝑒∫ 𝐺1𝑏𝑑𝑅  and   
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𝐺1 =
(−𝑛(𝑐11−𝑐21)(𝑐12+𝑐13𝑏𝑅𝑐11 ) ( 𝐷𝑏𝑅)𝑛 + 2(𝑐11−𝑐21)2𝑏𝑅 + (𝑐11−𝑐21)(𝑐12+𝑐13−𝑐22−𝑐23)𝑏𝑅𝑐11 ( 1 − ( 𝐷𝑏𝑅)𝑛)−2Θ𝑝 (𝑐11−𝑐21)𝑛𝑏𝑅𝑐11 − 2Θ𝑝𝑏𝑅0 (𝑐11−𝑐21)𝑛𝑅𝑐11 +  (𝑐12 + 𝑐13 − 𝑐22 − 𝑐23) (1 − ( 𝐷𝑏𝑅)𝑛)+ 𝑏𝑅0𝑛Θ𝑝(1−𝑅0)2(𝑐12+𝑐13−𝑐22−𝑐23)𝑛 (1 − ( 𝐷𝑏𝑅)𝑛) − Θ𝑝𝑅0(1−𝑅0) (1𝑅 − 1)  

 

V. NUMERICAL EVALUATION 

 

Table 1: Elastic constants values of orthotropic materials (topaz & barite) and isotropic material (steel). 

 

Elastic constants 𝒄𝒊𝒋 (𝒊𝒏 𝟏𝟎𝟏𝟏 𝑵𝒎𝟐) 
 

𝒄𝟏𝟏 𝒄𝟏𝟐 𝒄𝟏𝟑 𝒄𝟐𝟏 

Topaz (Orthotropic) 2.813 1.258 0.846 1.258 

Barite (Orthotropic) 0.907 0.273 0.275 0.273 

Steel (isotropic) 2.908 1.27 1.27 2.908 

 

To observe the effect of temperature and pressure on spherical shell composed of orthotropic materials (topaz & barite) 

and isotropic material (steel) the figures 2 to 7 are drawn between stresses and radii ratios. The standardized values of 

material constants are mentioned in Table1. 

 

 
 

Figure 2: Creep stresses in the spherical shell for orthotropic materials (topaz & barite) and isotropic material 

(steel) for  𝒏 = 𝟏, 𝜽 =  𝟎. 𝟓 &  𝒑 = 𝟓. 
 

 
 

Figure 3: Creep stresses in the spherical shell for orthotropic materials (topaz & barite) and isotropic material 

(steel) for  𝒏 = 𝟏, 𝜽 =  𝟎. 𝟓 &  𝒑 = 𝟏𝟎. 
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Figures 2 and 3 shows the behaviour of circumferential stresses at the creep state in a spherical shell for orthotropic 

materials (topaz & barite) and isotropic material (steel) for  𝑛 = 1, 𝜃 =  0.5  and different values of  𝑝 = 5 & 10 

respectively. The creep stresses are maximum on the inner surface of the shell compared to the shell’s outer surface 

with the increase in the shell’s thickness. If the value of pressure extends from 5 to 10, the stresses in the spherical shell 

of steel increase, but in case of the spherical shell of topaz and barite, the stresses decrease. 

 

 
 

Figure 4: Creep stresses in the spherical shell for orthotropic materials (topaz & barite) and isotropic material 

(steel) for  𝒏 = 𝟏, 𝜽 = 𝟏 &  𝒑 = 𝟓. 
 

 
 

Figure 5: Creep stresses in the spherical shell for orthotropic materials (topaz & barite) and isotropic material 

(steel) for  𝒏 = 𝟏, 𝜽 = 𝟏 &  𝒑 = 𝟏𝟎. 
 

Figures 4 and 5 represent the pattern of circumferential stresses at the creep state in a spherical shell for orthotropic 

materials (topaz & barite) and isotropic material (steel) for  𝑛 = 1, 𝜃 =  1  , and different values of 𝑝 = 5 & 10, 
respectively. If the value of 𝑝 extends from 5 to 10, then the stresses in steel are tensile, but in topaz and barite, the 

stresses are compressive on the mid-surface of the shell. 
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Figure 6: Creep stresses in the spherical shell for orthotropic materials (topaz & barite) and isotropic material 

(steel) for  𝒏 = 𝟏, 𝜽 =  𝟐 &  𝒑 = 𝟓. 
 

 
 

Figure 7: Creep stresses in the spherical shell for orthotropic materials (topaz & barite) and isotropic material 

(steel) for  𝒏 = 𝟏, 𝜽 = 𝟐 &  𝒑 = 𝟏𝟎. 
 

Figures 6 and 7 represent the pattern of circumferential stresses at the creep state in a spherical shell for orthotropic 

materials (topaz & barite) and isotropic material (steel) for  𝑛 = 1, 𝜃 =  2  and different values of  𝑝 = 5 & 10 

respectively. In both topaz and barite, increasing the shell thickness results in greater creep stresses on the outer surface 

compared to the inner surface. In the case of steel, an increase in shell thickness results in higher creep stresses on the 

inner surface compared to the outer surface.  

 

It can also be seen that if the value of 𝑝 extends from 5 to 10, the stresses in topaz are more compressive than the 

stresses in barite, and the stresses in steel are tensile on the mid-surface of the shell. 

 

VI. SUMMARY AND CONCLUSION 

 

An analytical solution for creep stresses in a spherical shell made of orthotropic material under external pressure is 

presented using transition theory. The previous study employed the transition theory to investigate elastic-plastic stress 

concentrations in orthotropic material, which are modelled as spherical shells subjected to a temperature gradient and 

found that orthotropic shells are useful for engineering purposes. In this study, a comparison has been made between 
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orthotropic materials (topaz & barite) and an isotropic material (steel) to identify that which is appropriate for 

engineering design in terms of their strength, durability, and lifespan. Based on graphical and numerical analysis, it is 

concluded that topaz has compressive stresses and steel has tensile stresses on the mid-surface of the shell.  

 

As a result, it can be inferred that the spherical shell of topaz (orthotropic material) is better for extremely high 

temperatures without mechanical loading. In contrast, the spherical shell of steel (isotropic material) is more stable in 

high-pressure and mechanical loading. Spherical shell of orthotropic material topaz can be considered by design 

engineers in high temperature conditions.  
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